Page 1



joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-021131

Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	4.6.0
	(


	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	


	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x


	

	Title:
(

	Enable creation/destruction of load level notifications at the request of Framework

	
	

	Source:
(

	AePONA – Eamonn Murray

	
	

	Work item code:
(

	OSA2
	
	Date: (

	31/10/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F  (correction)
A  (corresponds to a correction in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Load Management supports both push and pull mechanisms. Although the APIs define methods on the Framework interface to receive autonomous load notifications from either App or Svc, there is no existing mechanism whereby the Framework can request that this mode of operation take place. The current APIs allow either the App or Svc to request that the Framework operate in this fashion.

	
	

	Summary of change:
(

	Introduce the createLoadLevelNotification and destroyLoadLevelNotification methods to the Interfaces, IpAppLoadManager, IpSvcLoadManager.

	
	

	Consequences if 
(

not approved:
	The Framework Load Management specification is incomplete and poorly defined. Implementations of Load Management functionality will be open to vendor specific interpretation with resulting interoperability problems.

	
	

	Clauses affected:
(

	7.1.2.5, 7.1.2.6; 7.3.3.7; 8.1.4.1, 8.1.4.2; 8.3.4.8

	
	

	
	Y
	N
	
	

	Other specs
(

	
	(
	 Other core specifications
(

	

	affected:
	
	(
	 Test specifications
	

	
	
	(
	 O&M Specifications
	

	
	

	Other comments:
(

	


How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.  Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to the change request.

Summary:

The OSA framework Load Management capability supports bidirectional exchange of load management information between Applications, Framework and SCSs, with the Framework acting in a central role of manager and dispatcher or load notifications. Applications can obtain load information relating to Framework and SCSs, the Framework can obtain load information relating to Applications and SCSs, and the SCSs can obtain load management information relating to Applications and Framework.

Two mechanisms are provided to supported load management. A Pull mechanism whereby the interested party makes an explicit request to obtain (pull) the load status of the interrogated party, and a push mechanism whereby the interested party registers an interest to receive load information (via push) from the interrogated party at some point in the future. 

The pull mechanism is supported by the IpAppLoadManager::queryAppLoadReq, IpLoadManager::queryLoadReq, IpSvcLoadManager::querySvcLoadReq and IpFwLoadManager::queryLoadReq methods. The Pull mechanism is therefore fully supported across all load management interfaces.

The push mechanism is supported from Framework to Application through use of the IpLoadManager::(createLoadLevelNotification, destroyLoadLevelNotification, suspendNotification, resumeNotification) and IpAppLoadManager::loadLevelNotification methods. Likewise the Framework may also push load notifications to the SCS  through using IpFwLoadManager::(createLoadLevelNotification, destroyLoadLevelNotification, suspendNotification, resumeNotification) and IpSvcLoadManager::loadLevelNotification.

However load notifications from either Application or SCS pushed towards the framework are not supported in the same way, with the result that there is no explicit mechanism to commence or cease such notifications from applications or SCSs. The methods currently supported are IpAppLoadManager::(suspendNotification,resumeNotification) and IpLoadManager::reportLoad for applications to push notifications to the framework, and IpSvcLoadManager::(suspendNotification, resumeNotification) and IpFwLoadManager::reportLoad for SCSs to push notifications to the framework.

This current imbalance in push mechanisms may result in vendor specific implementations and behaviour that is not fully under the control of the framework. For example applications or services may choose to always assume that load notification is enabled, or interpret the suspend/resume methods for an additional purpose beyond their current specified role.

AePONA propose that to guarantee defined  behaviour of  load management interfaces between Applications, Framework and SCSs, the createLoadNotification and destroyLoadNotification methods are required in both IpAppLoadManager and IpSvcLoadManager interfaces in order to fully support the correct push mechanism. This document outlines the changes required to the framework specification in order to support this.

************** Change #1: Modified Sequence Diagram App-Fw interface ****************************

7.1.2.5 Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function based on policy. 



[image: image2.wmf] : 

IpAppLoadManager

 : 

IpLoadManager

1: 

createLoadLevelNotification

( )

Framework detects a

load condition change

and  notifies the application.

The application may take

3: 

loadLevelNotification

( )

2: load change detection & policy evaluation

5: 

loadLevelNotification

( )

6: 

destroyLoadLevelNotification

( )

4: load change detection & policy evaluation

appropriate load control

action – implementation

detail.

This is Framework

implementation detail.

The Framework may take

appropriate load control

action.

This is Framework

implementation detail.

The Framework may take

appropriate load control

action.


************** End of Change #1: Modified Sequence Diagram App-Fw interface *********************
************** Change #2: Additional Sequence Diagram App-Fw interface ****************************

7.1.2.6 Load Management: Framework callback registration and Application load control

This sequence diagram shows how the framework registers itself and the application invokes load management function to inform the framework of application load. 


[image: image3.wmf] : 

IpLoadManager

 : 

IpAPPLoadManager

1: 

createLoadLevelNotification

( )

Application detects a

load condition change

and reports to framework.

The framework may take

3: 

reportLoad

( )

2: load change detection

5: 

reportLoad

( )

6: 

destroyLoadLevelNotification

( )

4: load change detection

This is application

implementation detail.

appropriate load control

action - implementation

detail

The Application may take

appropriate load control

action.

This is application

implementation detail.

The Application may take

appropriate load control

action.


************** End of Change #2: Additional Sequence Diagram App-Fw interface *********************
************** Change #3: Class Definitions App-Fw interface ****************************
7.3.3.7 Interface Class IpAppLoadManager 

Inherits from: IpInterface.
The client application developer supplies the load manager application interface to handle requests, reports and other responses from the framework load manager function.  The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface. 

	<<Interface>>

IpAppLoadManager

	

	queryAppLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
createLoadLevelNotification() : void

destroyLoadLevelNotification() : void
resumeNotification () : void

suspendNotification () : void




Method

queryAppLoadReq()

The framework uses this method to request the application to provide load statistics records for the application. 

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface. 

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Method

queryLoadErr()

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface. 

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Method

loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework which have been registered for load level notifications) this method is invoked on the application.  

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Method

createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the application. 

Parameters

No Parameters were identified for this method

Method

destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application. 

Parameters

No Parameters were identified for this method

Method

resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. 

Parameters

No Parameters were identified for this method

Method

suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition. 

Parameters

No Parameters were identified for this method

************** End of Change #3: Class Definitions App-Fw interface ****************************

************** Change #4: Modified Sequence Diagram Svc-Fw interface ***********************

8.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registers itself and the framework invokes load management function based on policy



[image: image5.wmf] : 

IpSvcLoadManager

 : 

IpFwLoadManager

1: 

createLoadLevelNotification

( )

2: load change detection & policy evaluation

3: 

loadLevelNotification

( )

4: load change detection & policy evaluation

5: 

loadLevelNotification

( )

6: 

destroyLoadLevelNotification

( )

Framework detects a

load condition change

and notifies the service.

The service may take

This is Framework

implementation detail.

The Framework may take

appropriate load control

action.

This is Framework

implementation detail.

The Framework may take

appropriate load control

action.

appropriate load control

action - implementation

detail.


************** End of Change #4: Modified Sequence Diagram Svc-Fw interface ***********************

************** Change #5: Additional Sequence Diagram Svc-Fw interface ****************************
8.1.4.2 Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registers itself and the service invokes load management function to inform the framework of service load


[image: image6.wmf] : 

IpFwLoadManager

 : 

IpSvcLoadManager

1: 

createLoadLevelNotification

( )

2: load change detection

3: 

reportLoad

( )

4: load change detection

5: 

reportLoad

( )

6: 

destroyLoadLevelNotification

( )

This is service

implementation detail.

Service detects a

load condition change

and reports to framework.

The Framework may take

appropriate load control

action - implementation

detail

The service may take

appropriate load

control action

This is service

implementation detail.

The service may take

appropriate load

control action


************** End of Change #5: Additional Sequence Diagram Svc-Fw interface ************************
************** Change #6: Class Definitions Svc-Fw interface ****************************
8.3.4.8 Interface Class IpSvcLoadManager 

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function.  The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface. 

	<<Interface>>

IpSvcLoadManager

	

	querySvcLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
createLoadLevelNotification () : void

destroyLoadLevelNotification () : void
suspendNotification () : void

resumeNotification () : void




Method

querySvcLoadReq()

The framework uses this method to request the service instance to provide its load statistic records. 

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpCommonExceptions
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the service instance that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface. 

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpCommonExceptions
Method

queryLoadErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface. 

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions
Method

loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or framework which has been registered for load level notifications) this method is invoked on the SCF. 

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions
 Method

createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the  service instance.
Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service instance.
Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition. 

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. 

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
************** End of Change #6: Class Definitions Svc-Fw interface ****************************
�PAGE \# "'Page: '#'�'"  �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'"  �� Enter the CR number here. This number is allocated by the 3GPP support team.  It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'"  �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'"  �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'"  �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'"  �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'"  �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'"  �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.  Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'"  �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'"  �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'"  �� Enter the date on which the CR was last revised.  Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'"  �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'"  �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'"  �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'"  �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'"  �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'"  �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'"  �� Tick "yes" box if any other specifications are affected by this change.  Else tick "no".  You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'"  �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'"  �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'"  �� This is an example of pop-up text.



CR page 14

_1098875453.doc


 : IpAppLoadManager





 : IpLoadManager





1: createLoadLevelNotification( )





Framework detects a 





load condition change 





and  notifies the application. 





The application may take 





3: loadLevelNotification( )





2: load change detection & policy evaluation





appropriate load control





action.





5: loadLevelNotification( )





6: destroyLoadLevelNotification( )





4: load change detection & policy evaluation





The Framework may take





implementation detail.





appropriate load control 





action – implementation  





detail. 





action.





appropriate load control





The Framework may take





implementation detail.





This is Framework





This is Framework









_1098876177.doc


 : IpLoadManager





 : IpAPPLoadManager





1: createLoadLevelNotification( )





Application detects a 





load condition change 





and reports to framework.   





The framework may take





3: reportLoad( )





2: load change detection 





action.





appropriate load control





5: reportLoad( )





6: destroyLoadLevelNotification( )





4: load change detection 





This is application





implementation detail.





appropriate load control





action - implementation





detail





The Application may take





appropriate load control





action.





The Application may take





implementation detail.





This is application









_1098876318.doc


 : IpFwLoadManager





 : IpSvcLoadManager





1: createLoadLevelNotification( )





2: load change detection 





3: reportLoad( )





4: load change detection 





5: reportLoad( )





6: destroyLoadLevelNotification( )





This is service 





implementation detail.





appropriate load 





control action





Service detects a 





load condition change 





and reports to framework.  





The Framework may take





appropriate load control





action - implementation





detail





The service may take





appropriate load 





control action





The service may take





implementation detail.





This is service 









_1098874997.doc


 : IpSvcLoadManager





 : IpFwLoadManager





1: createLoadLevelNotification( )





2: load change detection & policy evaluation





3: loadLevelNotification( )





4: load change detection & policy evaluation





5: loadLevelNotification( )





6: destroyLoadLevelNotification( )





action.





appropriate load control





The Framework may take





implementation detail.





Framework detects a 





load condition change 





and notifies the service. 





The service may take 





action.





appropriate load control





The Framework may take





implementation detail.





This is Framework





This is Framework





appropriate load control





action - implementation





detail.









