Page 1



joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-021131

Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	4.6.0
	(


	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	


	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x


	

	Title:
(

	Enable creation/destruction of load level notifications at the request of Framework

	
	

	Source:
(

	AePONA – Eamonn Murray

	
	

	Work item code:
(

	OSA2
	
	Date: (

	31/10/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F  (correction)
A  (corresponds to a correction in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Load Management supports both push and pull mechanisms. Although the APIs define methods on the Framework interface to receive autonomous load notifications from either App or Svc, there is no existing mechanism whereby the Framework can request that this mode of operation take place. The current APIs allow either the App or Svc to request that the Framework operate in this fashion.

	
	

	Summary of change:
(

	Introduce the createLoadLevelNotification and destroyLoadLevelNotification methods to the Interfaces, IpAppLoadManager, IpSvcLoadManager.

	
	

	Consequences if 
(

not approved:
	The Framework Load Management specification is incomplete and poorly defined. Implementations of Load Management functionality will be open to vendor specific interpretation with resulting interoperability problems.

	
	

	Clauses affected:
(

	7.1.2.5, 7.1.2.6; 7.3.3.7; 8.1.4.1, 8.1.4.2; 8.3.4.8

	
	

	
	Y
	N
	
	

	Other specs
(

	
	(
	 Other core specifications
(

	

	affected:
	
	(
	 Test specifications
	

	
	
	(
	 O&M Specifications
	

	
	

	Other comments:
(

	


How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.  Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to the change request.

Summary:

The OSA framework Load Management capability supports bidirectional exchange of load management information between Applications, Framework and SCSs, with the Framework acting in a central role of manager and dispatcher or load notifications. Applications can obtain load information relating to Framework and SCSs, the Framework can obtain load information relating to Applications and SCSs, and the SCSs can obtain load management information relating to Applications and Framework.

Two mechanisms are provided to supported load management. A Pull mechanism whereby the interested party makes an explicit request to obtain (pull) the load status of the interrogated party, and a push mechanism whereby the interested party registers an interest to receive load information (via push) from the interrogated party at some point in the future. 

The pull mechanism is supported by the IpAppLoadManager::queryAppLoadReq, IpLoadManager::queryLoadReq, IpSvcLoadManager::querySvcLoadReq and IpFwLoadManager::queryLoadReq methods. The Pull mechanism is therefore fully supported across all load management interfaces.

The push mechanism is supported from Framework to Application through use of the IpLoadManager::(createLoadLevelNotification, destroyLoadLevelNotification, suspendNotification, resumeNotification) and IpAppLoadManager::loadLevelNotification methods. Likewise the Framework may also push load notifications to the SCS  through using IpFwLoadManager::(createLoadLevelNotification, destroyLoadLevelNotification, suspendNotification, resumeNotification) and IpSvcLoadManager::loadLevelNotification.

However load notifications from either Application or SCS pushed towards the framework are not supported in the same way, with the result that there is no explicit mechanism to commence or cease such notifications from applications or SCSs. The methods currently supported are IpAppLoadManager::(suspendNotification,resumeNotification) and IpLoadManager::reportLoad for applications to push notifications to the framework, and IpSvcLoadManager::(suspendNotification, resumeNotification) and IpFwLoadManager::reportLoad for SCSs to push notifications to the framework.

This current imbalance in push mechanisms may result in vendor specific implementations and behaviour that is not fully under the control of the framework. For example applications or services may choose to always assume that load notification is enabled, or interpret the suspend/resume methods for an additional purpose beyond their current specified role.

AePONA propose that to guarantee defined  behaviour of  load management interfaces between Applications, Framework and SCSs, the createLoadNotification and destroyLoadNotification methods are required in both IpAppLoadManager and IpSvcLoadManager interfaces in order to fully support the correct push mechanism. This document outlines the changes required to the framework specification in order to support this.

************** Change #1: Modified Sequence Diagram App-Fw interface ****************************

7.1.2.5 Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function based on policy. 
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************** End of Change #1: Modified Sequence Diagram App-Fw interface *********************
************** Change #2: Additional Sequence Diagram App-Fw interface ****************************

7.1.2.6 Load Management: Framework callback registration and Application load control

This sequence diagram shows how the framework registers itself and the application invokes load management function to inform the framework of application load. 
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************** End of Change #2: Additional Sequence Diagram App-Fw interface *********************
************** Change #3: Class Definitions App-Fw interface ****************************
7.3.3.7 Interface Class IpAppLoadManager 

Inherits from: IpInterface.
The client application developer supplies the load manager application interface to handle requests, reports and other responses from the framework load manager function.  The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface. 

	<<Interface>>

IpAppLoadManager

	

	queryAppLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
createLoadLevelNotification() : void

destroyLoadLevelNotification() : void
resumeNotification () : void

suspendNotification () : void




Method

queryAppLoadReq()

The framework uses this method to request the application to provide load statistics records for the application. 

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface. 

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Method

queryLoadErr()

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface. 

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Method

loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework which have been registered for load level notifications) this method is invoked on the application.  

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Method

createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the application. 

Parameters

No Parameters were identified for this method

Method

destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application. 

Parameters

No Parameters were identified for this method

Method

resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. 

Parameters

No Parameters were identified for this method

Method

suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition. 

Parameters

No Parameters were identified for this method

************** End of Change #3: Class Definitions App-Fw interface ****************************

************** Change #4: Modified Sequence Diagram Svc-Fw interface ***********************

8.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registers itself and the framework invokes load management function based on policy
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************** End of Change #4: Modified Sequence Diagram Svc-Fw interface ***********************

************** Change #5: Additional Sequence Diagram Svc-Fw interface ****************************
8.1.4.2 Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registers itself and the service invokes load management function to inform the framework of service load
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************** End of Change #5: Additional Sequence Diagram Svc-Fw interface ************************
************** Change #6: Class Definitions Svc-Fw interface ****************************
8.3.4.8 Interface Class IpSvcLoadManager 

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function.  The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface. 

	<<Interface>>

IpSvcLoadManager

	

	querySvcLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
createLoadLevelNotification () : void

destroyLoadLevelNotification () : void
suspendNotification () : void

resumeNotification () : void




Method

querySvcLoadReq()

The framework uses this method to request the service instance to provide its load statistic records. 

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpCommonExceptions
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the service instance that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface. 

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpCommonExceptions
Method

queryLoadErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface. 

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions
Method

loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or framework which has been registered for load level notifications) this method is invoked on the SCF. 

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions
 Method

createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the  service instance.
Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service instance.
Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition. 

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. 

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
************** End of Change #6: Class Definitions Svc-Fw interface ****************************
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